Dissociated Representations of Deceptive Intentions and Kinematic Adaptations in the Observer's Motor System.
نویسندگان
چکیده
Previous studies showed that observing deceptive actions modulates the activity of the observer's motor system. However, it is unclear whether this modulation reflects the coding of deceptive intentions or the mapping of the kinematic adaptations required to attain deceptive actions. Here, we used single-pulse transcranial magnetic stimulation to measure cortico-spinal excitability (CSE) from hand and forearm muscles while participants predicted the weight of cubes lifted by actors who received truthful information on the object weight and provided 1) truthful (truthful actions) or 2) deceptive (deceptive actions) cues to the observers or 3) who received fooling information and were asked to provide truthful cues (deceived actions). This way, we independently manipulated actor's intentions and kinematic adaptations. We found that, as compared to truthful action observation, CSE increased during observation of deceptive actions, but decreased during observation of deceived actions. Importantly, while the CSE enhancement in response to deceptive intentions lacked muscle specificity, perceiving kinematic alterations in the deceived condition affected CSE only for the hand muscle involved in kinematic adaptations to unexpected object weight. This suggests that actor's intentions and movement kinematics may be coded by the observer's motor system at different hierarchical levels of action representation.
منابع مشابه
Kinematics of Hip, Knee and Ankle During Cross- Slope Walking
Purpose: Little information is available on joint kinematic adaptations during walking on cross-slope surfaces (i.e. a surface incline perpendicular to the direction of locomotion). This study aimed to evaluate the effects of cross-slope surfaces on three-dimensional (3D) kinematics of hip, knee, and ankle joints during stance phase of walking. Methods: This is a quasi-experimental study...
متن کاملMotor resonance in left- and right-handers: evidence for effector-independent motor representations
The idea of motor resonance was born at the time that it was demonstrated that cortical and spinal pathways of the motor system are specifically activated during both action-observation and execution. What is not known is if the human action observation-execution matching system simulates actions through motor representations specifically attuned to the laterality of the observed effectors (i.e...
متن کاملFrom action representation to action execution: exploring the links between cognitive and biomechanical levels of motor control
Along with superior performance, research indicates that expertise is associated with a number of mediating cognitive adaptations. To this extent, extensive practice is associated with the development of general and task-specific mental representations, which play an important role in the organization and control of action. Recently, new experimental methods have been developed, which allow for...
متن کاملWhen emulation becomes reciprocity.
It is well known that perceiving another's body movements activates corresponding motor representations in an observer's brain. It is nevertheless true that in many situations simply imitating another's actions would not be an effective or appropriate response, as successful interaction often requires complementary rather than emulative movements. At what point does the automatic tendency to mi...
متن کاملDeception Detection in Action: Embodied Simulation in Antisocial Human Interactions
Spotting the intentions of a pickpocket in a crowded environment may save a few dollars. If you are a police officer, then identifying a suspect who is pretending to reach for a wallet while actually pulling a gun can be a matter of life or death. These examples illustrate that detecting deceptive intentions from other persons' actions is of great practical importance in many social contexts. A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cerebral cortex
دوره 28 1 شماره
صفحات -
تاریخ انتشار 2018